Activation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants.
نویسندگان
چکیده
Cyclophosphamide (CPA) and ifosfamide (IFA) are widely used anticancer agents that require metabolic activation by cytochrome P450 (CYP) enzymes. While 4-hydroxylation yields DNA-alkylating and cytotoxic metabolites, N-dechloroethylation results in the generation of neuro- and nephrotoxic byproducts. Gene-directed enzyme prodrug therapies (GDEPT) have been suggested to facilitate local CPA and IFA bioactivation by expressing CYP enzymes within the tumor cells, thereby increasing efficacy. We screened bacterial CYP BM3 mutants, previously engineered to metabolize drug-like compounds, for their ability to catalyze 4-hydroxylation of CPA and IFA. Two CYP BM3 mutants showed very rapid initial bioactivation of CPA and IFA, followed by a slower phase of product formation. N-dechloroethylation by these mutants was very low (IFA) to undetectable (CPA). Using purified CYP BM3 as an extracellular bioactivation tool, cytotoxicity of CPA and IFA metabolism was confirmed in U2OS cells. This novel application of CYP BM3 possibly provides a clean and catalytically efficient alternative to liver microsomes or S9 for the study of CYP-mediated drug toxicity. To our knowledge, the observed rate of CPA and IFA 4-hydroxylation by these CYP BM3 mutants is the fastest reported to date, and might be of potential interest for CPA and IFA GDEPT.
منابع مشابه
Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines.
The anticancer oxazaphosphorine prodrugs cyclophosphamide and ifosfamide are activated in human liver by a 4-hydroxylation reaction catalyzed by multiple cytochrome P450 (CYP) enzymes. In the present study, we used a cultured human hepatocyte model to identify possible inducers of the CYP-catalyzed activation of these two anticancer prodrugs. Treatment of primary cultures of human hepatocytes w...
متن کاملActivation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics.
Cyclophosphamide (CPA) and ifosfamide (IFA) are oxazaphosphorine anticancer prodrugs metabolized by two alternative cytochrome P450 (P450) pathways, drug activation by 4-hydroxylation and drug inactivation by N-dechloroethylation, which generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde. CPA and IFA metabolism catalyzed by P450s 2B1, 2B4, 2B5, and seven site-specific 2B1 muta...
متن کاملGeneration of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3.
In recent studies, the wild-type and mutant forms of cytochrome P450 (P450) BM3 (CYP102A1) from Bacillus megaterium were found to metabolize various drugs through reactions similar to those catalyzed by human P450 enzymes. Therefore, it was suggested that CYP102A1 can be used to produce large quantities of the metabolites of human P450-catalyzed reactions. trans-Resveratrol (3,4',5-trihydroxyst...
متن کاملEfficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space.
In the present study, the diversity of a library of drug-metabolizing bacterial cytochrome P450 (P450) BM3 mutants was evaluated by a liquid chromatography-mass spectrometry (LC-MS)-based screening method. A strategy was designed to identify a minimal set of BM3 mutants that displays differences in regio- and stereoselectivities and is suitable to metabolize a large fraction of drug chemistry s...
متن کاملGenetically engineered V79 Chinese hamster cells metabolically activate the cytostatic drugs cyclophosphamide and ifosfamide.
V79 cells, genetically engineered to express active cytochromes P450IIB1 and P450IA1, were used to study the cytotoxicity and mutagenicity of cyclophosphamide and ifosfamide. Cyclophosphamide, tested up to a concentration of 2 mM, was not cytotoxic in V79 nor in the P450IA1-expressing V79-derived cell line XEM2. Pronounced cytotoxicity was, however, observed in the P450IIB1-expressing V79-deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology letters
دوره 232 1 شماره
صفحات -
تاریخ انتشار 2015